
ALL PLATFORMS SAVE

WHY DO YOU NEED TO USE THIS PLUGIN ?

Easy to use: same line of code to save or load game data on all supported Unity platforms.

Game data can be saved using PlayerPrefs or external files.

Works on all Unity platforms without making any changes to the code.

Supports multiple save files.

CURRENTLY SUPPORTED ADVERTISERS

Jsonserializationfilesave

serializes data using built-in JSON serializer and saves the result into an external file

JSONSerializationPlayerPrefs

serializes data using built-in JSON serializer and saves the result as a string using Player-

Prefs.

BinarySerializationFileSave

serializes data using BinaryFormatter and saves the result into an external file.

BinarySerializationPlayerPrefs

serializes data using the BinaryFormatter and saves the result as a string using PlayerPrefs

SETUP GUIDE

Import GleySavePlugin into Unity.

Go to Window->Gley->All Platforms Save to open the plugin settings window.

Step 1 / 3

Click Add Build Target button and select all platform you want to build for and for each set

Step 2 / 3

To remove the save support for a platform click the Remove Build Target button.

Make sure your current build target is added to Save Settings in order to work in Unity

Editor. (ex: If Unity editor is set to Android you must add Android as one of your build

targets in the Save Settings).

After all configurations are done press Save button to apply the settings.

Step 3 / 3

USER GUIDE
Load

Step 1 / 4

SaveManager.Instance.Load<T> (fullPath, DataWasLoaded,encrypt);

T -> a class in which saved data will be deserialized into.

fullPath-> full path to the file location.

DataWasLoaded -> method called when load process is done.

encrypt -> if true, data will be decrypted using an XOR algorithm.

//this method will be called after load process is done

private void DataWasLoaded(T data, SaveResult result, string message)

{

if (result == SaveResult.Success)

{

// do something with your data

}

}

data -> actual loaded data.

result -> Succes/Error

mesage -> error message

Save

SaveManager.Instance.Save(T, fullPath, DataWasSaved,encrypt);

T -> an instance of any class marked as Serializable.

fullPath-> full path to the file location.

DataWasSaved -> method called when save process is done.

encrypt -> if true, data will be encrypted using an XOR algorithm.

//this method will be called when save process is complete

 private void DataWasSaved(SaveResult result, string message)

 {

 if (result == SaveResult.Error)

 //Do Something

}

result -> Succes/Error

mesage -> error message

Clear specific save file

//clears the specified file name at path

SaveManager.Instance.ClearFIle(fullPath);

Clear all save files

//clears all files found at path

SaveManager.Instance.ClearAllData(path);

Save to string

SaveManager.Instance.SaveString(T, CompleteMethod, encrypt);

T -> an instance of any class marked as Serializable.

CompleteMethod-> method called when save process is done.

encrypt -> if true, data will be encrypted using an XOR algorithm.

//this method will be called when save process is complete

 private void CompleteMethod(SaveResult result, string resultString)

 {

 if (result == SaveResult.Error)

 {

 //Error

 }

 else

 {

 //save this string for later use, it contains all your game data

 dataToLoadString = resultString;

 }

}

result -> Succes/Error

resultString-> all your game data serialized as string

Load from string

SaveManager.Instance.LoadString(dataToLoadString, DataWasLoaded, encrypt);

dataToLoadString -> a string generated by the SaveString method.

DataWasLoaded -> method called when load process is done.

encrypt -> if true, data will be decrypted using an XOR algorithm.

//this method will be called after load process is done

private void DataWasLoaded(T data, SaveResult result, string message)

{

 if (result == SaveResult.Success)

 {

 // do something with your data

 }

}

data -> actual loaded data.

result -> Succes/Error

mesage -> error message

EXAMPLES

Simple Save Example

Can be opened from here:

Assets/GleyPlugins/Save/Example/Scenes/Simple-

SaveExample.unity

Or by pressing Open Test Scene in settings window

This scene saves 4 properties:

public bool showVideo = true;

public int totalCoins = 4;

public float musicVolume = 0.5f;

public string randomText = "Some Text";

Using the buttons, those properties can be changed, then saved and loaded. Also a log mes-

sage appears on screen.

Any class marked as Serializable can be saved.

Variables need to be public

Any object of a serializable class can be serialized(saved).

Ex:

[System.Serializable]

public class GameValues

{

 public double version=0;

 public bool showVideo = true;

 public int totalCoins = 0;

 public float musicVolume = 1;

 public string randomText = "Random Text";

 public List<Level> levels = new List<Level>();

}

Be aware that some Unity objects are not serializable like Transform, GameObject, Color, Vec-

tor3, etc. You have to use some standard type to serialize them:

Ex:

To serialize a Color the following class can be used

[System.Serializable]

public class SerializableColor

{

 public float r;

 public float g;

 public float b;

 public float a;

}

Version 1.1.0 / 2018

